

Fig. 1. Two different views of the unit cell of RbGa_{7}. with thermal ellipsoids shown at the 50% probability level.
direct $\mathrm{Ga}-\mathrm{Ga}$ bonds occurring between $\mathrm{Ga}(1)$ and $\mathrm{Ga}(2)$; the linkage between adjacent sheets is ensured, along the z axis, by double bifurcated bonds involving $\mathrm{Ga}(4)$ as centers and occurring between $\mathrm{Ga}(3)$ and $\mathrm{Ga}(5) . \mathrm{Ga}(1)$ and $\mathrm{Ga}(2)$ have seven, $\mathrm{Ga}(3)$ and $\mathrm{Ga}(5)$ have six and $\mathrm{Ga}(4)$ has four coordinating Ga atoms at less than $3.5 \AA . \mathrm{Ga}(4)$ is coordinated to its four neighboring Ga atoms (3,4 and 5) nearly tetrahedrally ($120 \cdot 1,96 \cdot 7,120 \cdot 5$ and $96 \cdot 7^{\circ}$).

Rb atoms occupy vacant channels parallel to the y axis and bordered by Ga atoms (3, 4 and 5). These alkaline atoms form zig-zag chains parallel to the y axis with mean $\mathrm{Rb}-\mathrm{Rb}$ distance and angle of $4.135 \AA$ and 106°; their contact distances with Ga atoms range from 3.713 (3) to 3.842 (3) \AA.

In conclusion, this structure presents some analogies with that of $\mathrm{K}_{3} \mathrm{Ga}_{13}$ (Belin, 1980). Although in the latter, both the concentration of the alkaline-metal
atoms and the symmetry of the crystal are higher, Ga atoms have the ability to coordinate to each other within icosahedra arranged around inversion centers. However, in $\mathrm{K}_{3} \mathrm{Ga}_{13}$ the structure is more complex since Ga atoms are also coordinated within 11 vertex polyhedra. In both structures, connections between such polyhedra are ensured through direct and bifurcated $\mathrm{Ga}-\mathrm{Ga}$ bonds; the stacking of Ga atoms is not compact, leaving holes where the alkaline-metal atoms can reside.

References

Belin, C. (1980). Acta Cry'st. B36. 1339-1343.
Bruzzone, G. (1969). Acta Cryst. B25, 1206-1207.
Busing, W. R. \& Levy, H. A. (1957). Acta Crist. 10. 180-182.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE. Report ORNL-TM-306. Oak Ridge National Laboratory. Tennessee.
Doyle, P. A. \& Turner. P. S. (1968). Acta Cryst. A24, 390-397.
Johnson, C. K. (1971). ORTEP II. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Main, P., Woolfson, M. M.. Lessinger, L., Germain, G. \& Declercq, J. P. (1974). MUltan. A Su:stem of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. of York, England.
Thümmel, R. \& Klemm. W. (1970). Z. Anorg. Chem. B, 376, 44-63.
Willis. B. T. M. \& Pryor, A. W. (1975). Thermal Vibrations in Crystallography, pp. 101-102. Cambridge Univ. Press.
Yatsenko, S. P. (1977). J. Chim. Phys. Phys.-Chim. Biol. 74. $\mathrm{N}^{\circ} 70,836-843$.

Acta Cryst. (1981). B37, 2062-2064

The Structure of Tetrakis(tricarbonyl- μ_{3}-hydroxo-rhenium)-Benzene (1:2)

By B. Nuber, F. Oberdorfer and M. L. Ziegler*
Anorganisch-Chemisches Institut der Universität, Im Neuenheimer Feld 270, D-6900 Heidelberg, Federal Republic of Germany

(Received 16 March 1981; accepted 7 May 1981)

Abstract

Re}(\mathrm{CO})_{3} \mathrm{OH}\right]_{4} .2 \mathrm{C}_{6} \mathrm{H}_{6}, \quad M_{r}=1305 \cdot 18\), cubic, Pn $3 m, a=11.343$ (2) $\AA, V=1454.42 \AA^{3}$.

^[* To whom correspondence should be addressed.]

0567-7408/81/112062-03\$01.00 $Z=2, d_{c}=2.96, d_{o}=3.0 \mathrm{Mg} \mathrm{m}^{-3} . \mu(\mathrm{Mo} K a)=16.9$ mm^{-1}. Final weighted $R=0.029$ for 225 observed independent reflections. The structure consists of discrete tetramers, four Re and four O atoms occupy© 1981 International Union of Crystallography

ing the corners of a distorted cube. There are two benzene rings per formula unit in the lattice. The compound is most probably the first characterized example of a benzene ring using both faces as acceptors for $\mathrm{OH} \cdots \pi$ hydrogen bonding.

Introduction. Except for the X-ray structure analysis, the chemical and physical properties of the title compound, $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{OH}_{4} \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}\right.$ (I), have been reported (Herberhold, Süss, Ellermann \& Gäbelein, 1978). Based on IR and NMR data, a cubane-like structure with four Re and four O atoms at the edges of a distorted cube was proposed but no solvent molecules in the crystals analogous to the two benzene rings in (I) had been reported (Herberhold et al., 1978). We now report the molecular structure of (I).

The crystal and molecular structure of tetrakis-(tricarbonyl- μ_{3}-methanethiolato-rhenium) (II) and of tetrakis(tricarbonyl μ_{3}-methoxo-rhenium) (III) have been described earlier (Harrison, Marsh \& Trotter, 1972; Atwood, 1977, unpublished, quoted in Herberhold et al., 1978) allowing a comparison with (I). The latter was prepared by a procedure similar to those reported in the literature (Herberhold et al., 1978).

Single crystals were obtained by recrystallizing (I) from benzene solutions which were heated to 323-333 K and very slowly cooled down to room temperature. A yellow, sparkling, strongly refracting crystal ($0.4 \times$ $0.4 \times 0.3 \mathrm{~mm}$) mounted on top of a glass capillary was used for the investigation. Lattice parameters were derived from the setting angles of 25 machine-centred reflections (Syntex $R 3$, monochromatic Mo $K a$ radiation). Data collection ($\theta-2 \theta$ scans, $2 \theta<70^{\circ}$) yielded 225 observed independent reflections with $I>3 \cdot 0 \sigma(I)$. Lorentz and polarization corrections as well as an empirical (ψ scans) absorption correction were applied.

The crystal system is cubic with space group $\operatorname{Pn} 3 m\left(O_{h}^{4}\right)$, origin at centre ($3 m$). The positions of the atoms were taken from Patterson and Fourier maps, all atoms occupying special positions $\left[\operatorname{Re} 8(e), \mu_{3}\right.$-oxygen $\mathrm{O}(2) 8(e)$, carbonyl carbon and oxygen $\mathrm{C}(1), \mathrm{O}(1)$ $24(k)$ and benzene carbon C(6) 24(i); International Tables for X-ray Crystallography, 1969]. Final refinement by a cascade-matrix procedure with anisotropic temperature factors converged with a weighted R $=0.029$ (unweighted $R=0.040$). ${ }^{*}$ The weighting scheme was $W=1 / \sigma^{2}(F)$. Calculations were carried out on a Nova 3 computer; the plot was drawn on a Tektronix plotter. The program package was SHELXTL (Sheldrick, 1979).
Discussion. Atomic coordinates are listed in Table 1, bond distances and angles in Table 2; Fig. 1 shows a

[^1]Table 1. Atomic coordinates ($\times 10^{4}, \times 10^{5}$ for Re) and equivalent isotropic temperature factors $\left(\times 10^{3}, \times 10^{4}\right.$ for Re

	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)^{*}$
Re	$14141(7)$	$14141(7)$	$14141(7)$	$247(2)$
$\mathrm{O}\left(\mu_{3}\right)$	$3328(10)$	$3128(10)$	$3328(10)$	$17(4)$
$\mathrm{C}(1)$	$1405(16)$	$1405(16)$	$-243(17)$	$35(5)$
$\mathrm{O}(1)$	$1402(11)$	$1402(11)$	$-1290(13)$	$61(4)$
$\mathrm{C}_{\text {ring }}$	5000	$4146(19)$	$5854(19)$	$108(16)$

* $U_{\text {eq }}=\frac{1}{3}$ trace \tilde{U}, \tilde{U} signifying the diagonalized U matrix.

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\operatorname{Re}-\mathrm{C}(1)$	$1.877(20)$	$\mathrm{Re}-\operatorname{Re}$	$3.480(2)$	$\mathrm{Re}-\mathrm{O}\left(\mu_{3}\right)$	$2.207(8)$
$\mathrm{C}(1)-\mathrm{O}(1) 1.187(25)$	$\mathrm{C}_{\text {ring }}-\mathrm{C}_{\text {ring }}$	$1.369(16)$	$\mathrm{O}\left(\mu_{3}\right)-\mathrm{O}\left(\mu_{3}\right)$	$2 \cdot 156(10)$	
$\mathrm{Re}-\mathrm{Re}-\mathrm{Re}$	60.0	$\mathrm{Re}-\mathrm{C}(1)-\mathrm{O}(1)$	$179.7(21)$		
$\mathrm{O}\left(\mu_{3}\right)-\mathrm{O}\left(\mu_{3}\right)-\mathrm{O}\left(\mu_{3}\right)$	$60 \cdot 0$	$\mathrm{C}_{\text {ring }}-\mathrm{C}_{\text {ring }}-\mathrm{C}_{\text {ring }}$	$120 \cdot 0$		
$\mathrm{O}\left(\mu_{3}\right)-\operatorname{Re}-\mathrm{O}\left(\mu_{3}\right)$	73.9		$\mathrm{Re}-\mathrm{O}\left(\mu_{3}\right)-\mathrm{Re}$	$104 \cdot 0(5)$	

Fig. 1. ORTEP (Johnson, 1965) drawing of (1) viewed along one of the four threefold axes.
view of the cubane-like species together with the benzene rings. Figs. 2 and 3 are schematic drawings of (I) and give the numbering of the atoms and some bond lengths and angles. (I) forms discrete $\left[\mathrm{Re}(\mathrm{CO})_{3} \mathrm{OH}\right]_{4}$ molecules with T_{d} symmetry; the benzene rings (two per tetrameric unit) are perpendicular to the four threefold axes of the unit cell with the centres of the rings lying on these axes ($\frac{1}{2} \frac{1}{2} \frac{1}{2}$) at a distance of $3.285 \AA$ from the O atoms of the four $\mu_{3}-\mathrm{OH}$ groups. This means that only four benzene rings are needed to match with the eight $\mu_{3}-\mathrm{OH}$ groups of the two molecules ($Z=2$), or, in other words, that each of the four benzene rings is involved in two $\mathrm{OH} \cdots \pi$ hydrogen bonds. We believe that (I) represents the first characterized example of a benzene ring using both faces as acceptors for such $\mathrm{OH} \cdots \pi$ hydrogen bonding. Only very few

Fig. 2. Schematic drawing of (I) with atom numbering. The fourth benzene ring has been omitted for clarity.

Fig. 3. Schematic drawing of the cube with distances (\AA) and angles $\left({ }^{\circ}\right)$.
examples of single $\mathrm{OH} \cdots \pi$ hydrogen bonds characterized by X-ray methods are known (McPhail, Sim, Frey \& Ott, 1966; Hardy \& McNicol, 1976) with hydrogenbenzene distances of about $2 \cdot 1 \AA$. Assuming an $\mathrm{O}-\mathrm{H}$ distance of about $1 \AA$, the proton-benzene distance in (I) is longer; it should be close to $2 \cdot 3 \AA$. This rather longer $\mathrm{OH} \cdots \pi$ hydrogen bond could be due to the fact that the benzene rings in (I) are involved in two such bonds.*

The geometry of (I) can be best described as a distorted cube composed of two tetrahedra having a common centre. In one tetrahedron the corners are occupied by Re , in the other by O atoms $\left(\mu_{3}\right)$.

[^2]Regarding the $\mu_{3}-\mathrm{OH}$ groups as five-electron donors (Herberhold et al., 1978) no $\mathrm{Re}-\mathrm{Re}$ bonds need be assumed in order to obey the 18 -electron rule for the Re atoms. The $\operatorname{Re}-\operatorname{Re}$ distances [3.480 (2) \AA] are clearly outside the range of $\mathrm{Re}-\mathrm{Re}$ single bonds.

The $\mathrm{Re}-\mathrm{C}_{\text {carbonyl }}$ distances as well as the $\mathrm{C}-\mathrm{O}$ distances are within the range of values reported in the literature; the same is valid for the $\mathrm{C}-\mathrm{C}$ lengths in the benzene rings.

A comparison between (I) and (II) is interesting. In the latter four Re and four S atoms respectively form almost regular tetrahedra (Harrison et al., 1972). In conrast to (I) the Re-Re distances in (II) vary from 3.853-3.957 (3) \AA, a phenomenon which has also been reported for the $\mathrm{Re}-\mathrm{Re}$ distances in $\mathrm{Re}_{4}(\mathrm{CO})_{16}^{2-}$ (2.956-3.024 \AA; Churchill \& Bau, 1968) and which has been attributed to crystal packing. Due to the symmetry requirements of the space group, the $\mathrm{Re}-\mathrm{Re}$ and also the $\mathrm{O}-\mathrm{O}$ distances are identical in (I); the Re_{4} and O_{4} tetrahedra are ideal.

References

Churchill, M. R. \& Bau, R. (1968). Inorg. Chem. 7, 2606.
Hardy, A. D. U. \& McNicol, D. D. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1140-1142.
Harrison, W., Marsh, W. C. \& Trotter. J. (1972). J. Chem. Soc. Dalton Trans. pp. 1009-1011.

Herberhold, M., Süss, G., Ellermann. J. \& Gäbelein. H. (1978). Chem. Ber. 111, 2931-2941.

International Tables for X-ray Cristallography (1969). Vol. I, 3rd ed., pp. 336-337. Birmingham: Kynoch Press.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
McPhail, A. T., Sim, G. A., Frey, A. J. \& Ott, H. (1966). J. Chem. Soc. B, pp. 377-395.

Sheldrick, G. M. (1979). SHELXTL. An integrated system for solving, refining and displaying crystal structures from diffraction data. Univ. of Göttingen. Federal Republic of Germany.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36168 (4 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * We thank Professor G. A. Sim for discussion of this feature.

